# Community Earth System Model A Framework for Collaborative Research

Marika Holland
CESM Chief Scientist





## **CESM Management Structure**







### **CESM Project Experiments**

Information from http://www.cesm.ucar.edu/experiments/cesm1.0/index.html



#### CONTROL SIMULATIONS

| Brief Description                                                                                    | Case<br>Details | Diagnostics                                      |     |     |      |       | Length of Run<br>Diagnostics |                     |
|------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------|-----|-----|------|-------|------------------------------|---------------------|
| CCSM4 1° Pre-Industrial Control<br>Case Name: b40.1850.track1.1deg.006<br>Data Location: ESG         | Details         | 863-892 w/observations                           | Atm | Ice | Land | Ocean | CCR                          | Ocean<br>Timeseries |
|                                                                                                      |                 | 863-882 -<br>CCSM3 T85 Pre-Industrial<br>Control | Atm | Ice | Land | Ocean |                              |                     |
| CCSM4 1° Pre-Industrial Control (MOAR)<br>Case Name: b40.1850.track1.1deg.006a<br>Data Location: ESG | Details         | 1050-1079 w/observations                         | Atm | Ice | Land | Ocean |                              | Ocean<br>Timeseries |
| CCSM4 2° Pre-Industrial Control<br>Case Name: b40.1850.track1.2deg.003<br>Data Location: ESG         | Details         | 501-530 w/observations                           | Atm | Ice | Land | Ocean | OCR                          | Ocean<br>Timeseries |
|                                                                                                      |                 | 501-520 - CCSM3 T42<br>Pre-Industrial Control    | Atm | Ice | Land | Ocean |                              |                     |

#### PI Controls

- •CCSM4: 1°, 2°, T31,
- •CESM1: BGC, FASTCHEM, WACCM

#### 20C runs

- •All forcings-6 members
- single forcings

RCPs 2.6, 4.5, 6.0, 8.5

•6 ensemble members

#### Paleoclimate Runs:

Last Millenium, LGM,Mid-Holocene

Additional CESM1.0(CAM5) runs including 1° and 2° 1850, 20C and RCPs





### CCSM4/CESM1 J. Climate Special Collections

- •31 Papers available via AMS early-online release
- Numerous other papers in various stages of review
- Many CESM papers still in preparation
- Document major model components and aspects of simulated variability and change



http://journals.ametsoc.org/page/CCSM4/CESM1

To being and contrib in display

ESPC Workshop March, 2012

Marika Holland mholland@ucar.edu

**CESM Project Science Highlights** 





#### New Validation Tools - COSP-Enabled Comparisons

- CAM4 and CAM5 have similar cloud radiative forcing
- However, CAM5 have a much more realistic representation of cloud properties
- As shown here, total cloud fraction is higher and compares better to **CALIPSO** and ISCCP observations in CAM5

COSP-enabled total cloud comparisons, Kay et al. (in press)





## Where we are heading

- Capability for Higher Spatial Resolutions
- New Earth System Component Capabilities
- Improved Model Processes





# New Capabilities Development of an Isotope-Enabled CESM

Simulating Stable Water Isotopes in the Climate
System



Figure adapted from Paul, A. et al. 1999: Simulation of Water Isotopes in a Global Ocean Model, in *Use of Proxies in Paleoclimatology: Examples from the So. Atlantic,* Fischer G. and W. Wefer, eds., Springer-Verlag, 655-686.



#### Improved Earth System Processes - New ice sheet dynamical cores

- The Berkeley ISICLES project (BISICLES) has developed a parallel, higherorder dycore based on Chombo adaptive-mesh-refinement (AMR) software.
  - AMR allows high resolution (~1 km) near ice streams and grounding lines.
  - Has been used to study the acceleration of Pine Island Glacier in West Antarctica (Cornford et al., 2011)
- Another group is developing a higher-order, finite-element dycore on a variableresolution, unstructured mesh (using the MPAS framework).



Antarctic ice speed with higher-order solver on a fully adaptive mesh. (Courtesy of D. Martin)

Sample variable-resolution mesh for Greenland ice sheet

(Slide courtesy of Bill Lipscomb)



## New Developments Enable New Science

### For Example:

- Assess the importance of new feedbacks and interactions
- Examine regional variability/change
- Assess predictability on interannual-decadal timescales
- Apply new tools to studies of climate variability and change



Questions?





Extra Slides



## Increasing Model Capabilities

A subset of developments underway/being considered:

- Coupling to (Data Assimilation Research Testbed) DART, multi-instance capability
- Super-parameterization
- Ocean wave model (WaveWatch)
- Refined and regional grids
- Water and Carbon Isotopes
- New atmosphere dynamical cores
- New Land Ice dynamical cores
- And More...

